	1	The activation energy is less.	changes with the addition are more frequent. Of a consulpt	^				
	2	Collisions between molecules a	are more frequent. Of a contample					
	3	A greater proportion of molecule	es have energy greater than the activation energy.					
Α	1, 2	2 and 3						
В	Onl	y 1 and 2						
С	Onl	y 2 and 3						
D	Onl	y 1						
You	ur an:	swer C		[1]				

1. Which statement(s) explain(s) why reaction rates increase as temperature increases?

2. This question is about reaction rates.

Aqueous iron(III) ions, Fe³⁺(aq), react with aqueous iodide ions, I⁻(aq), as shown below.

$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_{2}(aq)$$

A student carries out three experiments to investigate how different concentrations of $Fe^{3+}(aq)$ and $I^{-}(aq)$ affect the initial rate of this reaction. The results are shown below.

	first order	Second orde	ur	
Experiment	[Fe ³⁺ (aq)] /moldm ⁻³	[I ⁻ (aq)] /moldm ⁻³	Initial rate /moldm ⁻³ s ⁻¹	
1	4.00 × 10 ⁻²	3.00 × 10 ⁻²	I \	120
2 برا	8.00 × 10 ⁻²	3.00 × 10 ⁻²	√2 1.62 × 10 ⁻³ ∠)×4
3	4.00 × 10 ⁻²	6.00 × 10 ⁻²	3.24 × 10 ⁻³	

a)*	Determine the rate constant and a possible two-step mechanism for this reaction that are consistent with these results. [6]						
	rase = k[Fe3+][I-]2						
	9 10410-4						
	$k = \frac{8.10 \times (0}{(4 \times (0^{-2})(3 \times (0^{-2})^2)^2} = 22.5 \text{ mol}^{-2} \text{dm}^6 \text{s}^{-1}$						
	moldm-3 5-1 moldm-3.9-1						
	$\frac{moldm^{-3}S^{-1}}{moldm^{-3}(3)^3} = \frac{moldm^{-3}S^{-1}}{moldm^{-3}S^{-1}}$						
	careel out						
	Slow: $fe^{3^{+}}(\infty) + 2T^{-}(\infty) \longrightarrow [FeI_{2}]^{+}$ (FeI ₂] + $Fe^{3^{+}}(\infty) \longrightarrow 2Fe^{2^{+}}(\infty) + I_{2}(\infty)$						
	overall equation:						
	2Fe3+ (00) + 2I (00) -> 2Fe2+ (00) + I2 (00)						

(b) A student carries out an investigation to find the activation energy, $\boldsymbol{E}_{\mathrm{a}}$, and the pre-exponential factor, A, of a reaction. The student determines the rate constant, k, at different temperatures, T.

The student then plots a graph of $\ln k$ against 1/T as shown below.

(i) Draw a best-fit straight line and calculate the activation energy, in J mol⁻¹. Give your answer to **three** significant figures.

Show your working.

gradient:
$$\frac{29-28}{2.9\times10^{-3}-4\times10^{-3}}=-909=\frac{-60}{R}$$

(ii) Use the graph to calculate the value of the pre-exponential factor, A.

Show your working.

$$1nA = 31.4$$

 $A = e^{31.4} = 4.33 \times 10^{13}$

pre-exponential factor,
$$A = 4.33 \times 0^{3}$$
 [2]

3. The diagram represents a Boltzmann distribution curve of molecules at a given temperature.

Which statement for this Boltzmann distribution curve is correct at a higher temperature?

- A The peak increases in height and moves to the left.
- **B** The peak increases in height and moves to the right.
- **C** The peak decreases in height and moves to the left.
- **D** The peak decreases in height and moves to the right.

Your answer D